Quantum group-twisted tensor products of C*-algebras. II
نویسندگان
چکیده
منابع مشابه
Connections over Twisted Tensor Products of Algebras
Motivated from some results in classical differential geometry, we give a constructive procedure for building up a connection over a (twisted) tensor product of two algebras, starting from connections defined on the factors. The curvature for the product connection is explicitly calculated, and shown to be independent of the choice of the twisting map and the module twisting map used to define ...
متن کاملOn Iterated Twisted Tensor Products of Algebras
We introduce and study the definition, main properties and applications of iterated twisted tensor products of algebras, motivated by the problem of defining a suitable representative for the product of spaces in noncommutative geometry. We find conditions for constructing an iterated product of three factors, and prove that they are enough for building an iterated product of any number of fact...
متن کاملCohomology of Twisted Tensor Products
It is well known that the cohomology of a tensor product is essentially the tensor product of the cohomologies. We look at twisted tensor products, and investigate to which extent this is still true. We give an explicit description of the Ext-algebra of the tensor product of two modules, and under certain additional conditions, describe an essential part of the Hochschild cohomology ring of a t...
متن کاملTwisted automorphisms of group algebras
We continue the study of twisted automorphisms of Hopf algebras started in [4]. In this paper we concentrate on the group algebra case. We describe the group of twisted automorphisms of the group algebra of a group of order coprime to 6. The description turns out to be very similar to the one for the universal enveloping algebra given in [4].
متن کاملTensor Products of Maximal Abelian Subalgberas of C*-algebras
It is shown that if C1 and C2 are maximal abelian self-adjoint subalgebras (masas) of C*-algebras A1 and A2, respectively, then the completion C1 ⊗ C2 of the algebraic tensor product C1 ⊙ C2 of C1 and C2 in any C*-tensor product A1 ⊗β A2 is maximal abelian provided that C1 has the extension property of Kadison and Singer and C2 contains an approximate identity for A2. Examples are given to show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Noncommutative Geometry
سال: 2016
ISSN: 1661-6952
DOI: 10.4171/jncg/250